skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Geumlek, J and"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Differential privacy has emerged as a gold standard in privacy-preserving data analysis. A popular variant is local differential privacy, where the data holder is the trusted curator. A major barrier, however, towards a wider adoption of this model is that it offers a poor privacy-utility tradeoff. In this work, we address this problem by introducing a new variant of local privacy called profile-based privacy. The central idea is that the problem setting comes with a graph G of data generating distributions, whose edges encode sensitive pairs of distributions that should be made indistinguishable. This provides higher utility because unlike local differential privacy, we no longer need to make every pair of private values in the domain indistinguishable, and instead only protect the identity of the underlying distribution. We establish privacy properties of the profile-based privacy definition, such as post-processing invariance and graceful composition. Finally, we provide mechanisms that are private in this framework, and show via simulations that they achieve higher utility than the corresponding local differential privacy mechanisms. 
    more » « less